Chromosome length and perinuclear attachment constrain resolution of DNA intertwines
نویسندگان
چکیده
To allow chromosome segregation, topoisomerase II (topo II) must resolve sister chromatid intertwines (SCI) formed during deoxynucleic acid (DNA) replication. How this process extends to the full genome is not well understood. In budding yeast, the unique structure of the ribosomal DNA (rDNA) array is thought to cause late SCI resolution of this genomic region during anaphase. In this paper, we show that chromosome length, and not the presence of rDNA repeats, is the critical feature determining the time of topo II-dependent segregation. Segregation of chromosomes lacking rDNA also requires the function of topo II in anaphase, and increasing chromosome length aggravates missegregation in topo II mutant cells. Furthermore, anaphase Stu2-dependent microtubule dynamics are critical for separation of long chromosomes. Finally, defects caused by topo II or Stu2 impairment depend on attachment of telomeres to the nuclear envelope. We propose that topological constraints imposed by chromosome length and perinuclear attachment determine the amount of SCI that topo II and dynamic microtubules resolve during anaphase.
منابع مشابه
"Breaking up is hard to do": the formation and resolution of sister chromatid intertwines.
The absolute necessity to resolve every intertwine between the two strands of the DNA double helix provides a massive challenge to the cellular processes that duplicate and segregate chromosomes. Although the overwhelming majority of intertwines between the parental DNA strands are resolved during DNA replication, there are numerous chromosomal contexts where some intertwining is maintained int...
متن کاملMetaphase chromosome structure is dynamically maintained by condensin I-directed DNA (de)catenation
Mitotic chromosome assembly remains a big mystery in biology. Condensin complexes are pivotal for chromosome architecture yet how they shape mitotic chromatin remains unknown. Using acute inactivation approaches and live-cell imaging in Drosophila embryos, we dissect the role of condensin I in the maintenance of mitotic chromosome structure with unprecedented temporal resolution. Removal of con...
متن کاملA Topology-Centric View on Mitotic Chromosome Architecture
Mitotic chromosomes are long-known structures, but their internal organization and the exact process by which they are assembled are still a great mystery in biology. Topoisomerase II is crucial for various aspects of mitotic chromosome organization. The unique ability of this enzyme to untangle topologically intertwined DNA molecules (catenations) is of utmost importance for the resolution of ...
متن کاملDHPLC Applications: Finding DNA Variation on the Y Chromosome
Denaturing High-Performance Liquid Chromatography (DHPLC) is a recently developed technique forthe detection of single nucleotide polymorphisms (SNPs) and mutations. It involves the comparisonbetween two or more DNAs as a mixture of denatured and reannealed PCR products. The methodologyis based on the principle of reversed phase liquid chromatography and uses a unique DNA sepa...
متن کاملPhysical Proximity of Sister Chromatids Promotes Top2-Dependent Intertwining
Sister chromatid intertwines (SCIs), or catenanes, are topological links between replicated chromatids that interfere with chromosome segregation. The formation of SCIs is thought to be a consequence of fork swiveling during DNA replication, and their removal is thought to occur because of the intrinsic feature of type II topoisomerases (Top2) to simplify DNA topology. Here, we report that SCIs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 206 شماره
صفحات -
تاریخ انتشار 2014